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Synchrotron-betatron coupling due to monochromatization
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The effects of large dispersion at the interaction point are discussed within the linear approximation of the
beam-beam force. The synchrotron and betatron motions affect each other. Synchrotron and betatron tune
shifts as well as bunch-length and energy-spread modifications appear, among many effects. Depending on the
parameters, degradations of the luminosity can occur due to the hourglass effect. More serious is an enlarge-
ment of the collision energy spread, which may reduce the event rate and invalidate the monochromatization
scheme.
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I. INTRODUCTION

A t-charm factory is being seriously considered@1#. To
obtain a sufficient number ofJ/c particles, a monochroma
tization scheme has been actively studied@2#. Because the
resonance width of theJ/c particle is much smaller than th
usual spreadsw of the collision energy ine1e2 storage
rings, most collisions would not be useful for the experime
Instead of reducing the energy spread of the beam, whic
quite difficult, monochromatization has been proposed.

The idea of monochromatization is to reducesw by pro-
ducing a rather large dispersionD with opposite signs for the
e1 ande2 beams at the interaction point~IP!. The dispersion
at IP, however, is known to be a source of synchrotr
betatron coupling.

Often, the synchrotron degree of freedom is treated a
large heat bath, which is not affected at all@3–5#. Such a
treatment might be reasonable when the dispersion is sm
as in the case where it originates from machine errors. On
other hand, in the monochromatization scheme, the dis
sion values might be well beyond the limit of this approx
mation. Hence, the effects on the synchrotron motion sho
also be considered, and the synchrotron and betatron deg
of freedom should be treated on equal footing.

In standard textbooks, such as Refs.@6,7#, it appears that
the definition of dispersion is based on the assumption
the energy of an electron is constant. This approach app
to be intuitively valid when the synchrotron tune valuenz is
close to zero, but we show that even this is not true. We a
show that the usual definition of dispersion is not appropr
in the presence of a large dispersion at IP.

In simulation programs such as the beam-beam-c
~BBC! described in@8#, these effects are already included.
weak-strong simulation has been run on the basis of
~three-dimensional!-symplectic beam-beam mapping@9#,
which showed a satisfactory performance of the monoch

*Also at KEK, High Energy Research Organization, Tsuku
Japan.
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matization scheme for the Beijingt-Charm factory@10#. On
the other hand, with only simulations it is difficult to unde
stand the general properties of such a scheme.

In this paper we discuss all possible linear effects due
the presence of dispersion at the IP, while paying attentio
the mutual interaction between the betatron and the sync
tron degrees of freedom within the weak-strong approxim
tion of the linearized beam-beam force. Considering the r
of the linear approximation in the usual beam-beam stu
we can expect good insight concerning these effects by u
this approximation. Such an analysis seems to be basi
understanding the fundamental structure of the problem
does not seem to have been performed with sufficient c
@11#. Of course, this simplified calculation should not be a
plied directly to a realistic estimate of the effects.

This paper is organized as follows. In Sec. II, we discu
the symplectic effects. Section III is devoted to those effe
associated with radiation~the beam sizes, etc.!, including the
luminosity and the energy resolution. Section IV is for d
cussion and conclusions. Some technical details are colle
in the Appendix.

Preliminary results on the subject have been already p
lished in a short form@12#.

II. SYMPLECTIC EFFECTS

A. One-turn matrix

We start by constructing a one-turn matrix for singl
particle motion, within the framework of the~weak-strong!
linear symplectic dynamics for the case where dispersion
ists at IP. We assume that there is only one IP and cons
only the vertical and longitudinal motions.

The physical variables describing the betatron and s
chrotron motions are

x5~y,p,z,«![~xi !, ~2.1!

where y is the vertical coordinate,p5mg rel(dy/ds)/p0 is
the vertical momentum normalized by the momentump0 of
the reference particle~a constant!, z5s2ct(s), «5(E

,
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2E0)/E0, whereE0 is the energy of the reference particl
andg rel is the relativistic factor of the nominal particle en
ergy.

The one-turn matrix from IP (s501) to IP(s502), ex-
cluding the beam-beam kick, can be put in the followi
general form@13# as long as the motion is stable:

M ~s!5H~s!B~s!M̂arc~s!B21~s!H21~s!, ~2.2!

M̂arc~s!5diag„~my!,r ~mz!…, B~s!5diag~by ,bz!,
~2.3!

by,z5S Aby,z 0

2ay,z /Aby,z 1/Aby,zD ,

r ~m!5S cosm sinm

2sinm cosm D , ~2.4!

H5S bI h

h̃ bI D , h5S z h

z8 h8
D ,

h̃5 jht j 5S 2h8 h

z8 2z
D . ~2.5!

Here b5A12det(h), j is the 232 symplectic metric,m
52pn, and n is the tune. Note thatH, B, and M̂arc are
symplectic in the 4D sense.

The 434 symplectic matrixM has ten degrees of free
dom. The number of Twiss parameters is also ten: they and
z modes have three parameters (n,a,b) each, and the four
parameters (h, h8, z, andz8) characterize the coupling be
tween the two degrees of freedom. Theh ’s are generaliza-
tions of the conventional dispersionD ’s, while thez ’s are to
be called time dispersions.

The conventional dispersionsD and D8 as defined in
Refs.@6,7# for example, assume that the energy of a parti
is constant. They are defined as the closed orbit of an
momentum particle. The conventional way is self consist
only when D and D8 vanish in the cavities@14#. Then,
h (h8) is identical withD (D8), andz andz8 vanish all over
the ring. With the beam-beam interaction in the presence
D at IP, however,D andD8 can be created in cavities eve
though they were zero before. This is why we needz ’s.
Thus, in this case, it is not appropriate, to useD ’s but the
~generalized! dispersionh is a natural extension ofD, which
~with z ’s! can work for general cases.

Now for simplicity, we assume that, without beam-bea
interaction, the synchrotron-betatron coupling is absent
IP is a symmetric point with respect to the betatron and s
chrotron motions,

Marc5M ~02,01!5H0B0M̂arc
0 B0

21H0
21 , ~2.6!

whereM̂arc
0 is M̂arc with my,z5my,z

0 , B0 is B with ay,z50,
andH0 is H with h5D0 andh85z5z850. We have also
implicitly assumed that the dispersion does not exist in ca
01650
e
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t
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ties. The nominal synchrotron tunenz
0 is negative for con-

ventional electron machines with a positive momentum co
paction factor. We, however, consider both signs fornz

0

because of the option of the negative momentum compac
factor @15#. Note that the subfix or superfix 0 refers to all th
unperturbed quantities evaluated without the beam-beam
teraction.

We now introduce the beam-beam interaction at IP. Fo
head-on collision, the linearized beam-beam force is rep
sented by the matrix

Mbb5S 1 0 0 0

24pj0 /by
0 1 0 0

0 0 1 0

0 0 0 1

D , ~2.7!

j05
Nreby

0

2pg relsy
0~sy

01sx
0!

. ~2.8!

Here,j0 is the vertical~nominal! beam-beam parameter,N is
the number of particles in the strong beam,r e is the classical
electron radius, andsx

0 (sy
0) is the nominal horizontal~ver-

tical! beam size.
For more realistic cases we should take into account

bunch-length effect@16#, one possible way is to linearize th
synchrotron-beam mapping@9#. For the sake of simplicity,
however, we use Eq.~2.7! in the following. It seems conve
nient to introduce the effective betatron functionby

eff as

by
eff5

sy

sp
, ~2.9!

wheresp5A^p2&, which agrees withby
0 when D050 and

j0.0. The typical parameters of the usual monochromati
tion scheme always satisfy the relationby

eff@sz , sz being
the bunch length. Therefore the bunch length effect is
important and this simplification is acceptable.

The full one-turn matrix~including the beam-beam inter
action! can thus be written as

M5Mbb
1/2MarcMbb

1/2. ~2.10!

B. Linear instabilities

The ~perturbed! tunes are obtained from the eigenvalu
of M. These latter, in view of the symplecticity ofM, can be
readily computed as@12#

2 cosm65cosmy
01cosmz

022pj0~sinmy
01x sinmz

0!6Ad,
~2.11!

where

d5$cosmy
02cosmz

022pj0~sinmy
02x sinmz

0!%2

116p2j0
2x sinmy

0 sinmz
0 ~2.12!

is the synchrotron tune-shift factor,
2-2
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x5
D0

2

by
0bz

0
.

D0
2s«

0

by
0sz

0
, ~2.13!

ands« is the energy spread. The motion is stable if and o
if cosm6 is real anducosm6u,1. To the lowest order inj0,
we obtain

ny
0→ny

01j0 , ~2.14!

nz
0→nz

01j0x. ~2.15!

Equation~2.14! is the well-known betatron tune shift, whil
Eq. ~2.15! implies that a synchrotron tune shift also occu
due to the presence ofD0 at the IP.

Equations~2.14! and ~2.15! imply that both tunes in-
crease. Considering the motion of the eigenvalues on the
circle in the complex plane, and from the fact that the mot
becomes unstable only when two of the eigenvalues mee
the circle, we can expect that the system becomes uns
when one of the following conditions applies:~1! ny

0

& half integers~betatron instability!; ~2! nz
0& half integers

~synchrotron instability!; ~3! nz
01ny

0& integers ~synchro-
betatron instability!.

Using Eq. ~2.11!, the eigenvalues can be computed e
actly. In Fig. 1 we plot the instability regions where th
growth rate~largest absolute eigenvalue! exceeds unity in the
(ny

0 ,nz
0) plane. Here~and hereafter, unless otherwise state!,

the set of model parameters listed in Table I is used.
The three unstable regions mentioned above are cle

visible. The synchrotron-betatron instability corresponds
the case withd,0. The unstable regions become thicker f
larger values ofj0 andD0. As can be seen from the figure,
machine might be intrinsically more stable whennz

0.0, be-
cause one can get rid of the synchrotron and synchrot

FIG. 1. The quantityJ ~growth rate21) as a function ofny
0

andnz
0 with D050.4 m,j050.05.

TABLE I. Standard parameters used as examples in this
per.

by
0 0.03 m bz

0 26.3 m
ey

0 431029 m ez
0 3.831026 m

s«
0 3.831024 sz

0 0.01 m
Ty 1000 Tz 500
01650
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betatron instabilities. Also note that the synchrotron-betat
instability region ~both upper and lower edges! moves
through the (ny

0 ,nz
0) plane asj0 is changed, while the uppe

edges of the betatron and synchrotron instabilities regi
stay fixed. This ‘‘floating instability’’ seems to be typical o
the sum resonance in the beam-beam interaction@17#.

It is seen that the naive coasting~constant energy! beam
approximation is not appropriate fornz

0;0. In fact, for nz
0

&0, the motion is unstable:nz
050 is a singular point and the

coasting beam approximation is misleading.
The conditionx!1 is equivalent to (D0s«

0)2/by
0!ez

0 ; for
monochromatization to be useful, the beam size should
dominated by the dispersion contribution, so that we hav

ey
0!

~D0s«
0!2

by
0

!ez
0 ; ~2.16!

ez ,ey being the emittances. It may be useful to note that
synchrotron tune shift is large for~1! largeD0, ~2! larges«

0 ,
~3! smallsz

0 , ~4! smallby
0, and~5! small unz

0u. Items~3!, ~4!,
and ~5! are general directions of design to obtain a lar
luminosity by making the beam size small while avoidin
synchrotron-betatron side bands@18#.

C. Twiss parameters

Twiss parameters are widely used in order to paramet
the one-turn matrix and to describe the properties of the
tice. Several definitions of Twiss parameters in the prese
of synchrotron oscillations have been proposed. We foll
the definition proposed in Ref.@13# where Twiss parameter
are regarded as parameters that factorize and diagonaliz
one-turn matrix. By this definition, dispersion is also i
cluded in the Twiss parameters. We use Eq.~2.10! and dis-
cuss how the beam-beam interaction in the monochroma
tion affects the Twiss parameters@14#.

For later convenience, we first express the beam enve
matrix ~in physical variables! s i j [^xixj& in terms of Twiss
parameters. The normal mode variableX is defined as

X5~HB!21x. ~2.17!

Let us assume that the beam envelope matrix for the nor
modes,Si j [^XiXj&, is

S5diag~eu ,eu ,ev ,ev!. ~2.18!

To evaluate thee ’s, we should include the radiation effect
which is done in Sec. III. Equation~2.18! is a good approxi-
mation for the equilibrium distribution of an electron beam
provided that the effect of radiation is small@19#.

From s5(HB)S(HB) t, we obtain, after some algebra,

^y2&5b2byey1$h21~bzz2azh!2%bz
21ez ,

^p2&5b2gyey1$h82gz1bzz8222azh8z8%ez ,

^z2&5$h21~ayh1byh8!2%by
21ey1bzb

2ez ,

^«2&5$z21~ayz1byz8!2%by
21ey1b2gzez ,

a-
2-3
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FIG. 2. h ~left! andz8 ~right! as functions ofj0 for different values ofnz
0 with D050.4 m,ny

050.1.
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^yp&52ayb
2ey1$gzhh82az~hz81zh8!1bzzz8%ez ,

^yz&52b~ayh1byh8!ey2b~azh2bzz!ez , ~2.19!

^y«&5b~ayz1byz8!ey1b~gzh2azz!ez ,

^p«&52$zb1ayb~ayz1byz8!%eyby
21

1$h8b2azb~2azh81bzz8!%ezbz
21 ,

^pz&5$bh1ayb~ayh1byh8!%eyby
211b~bzz82azh8!ez ,

^z«&5$hz1~ayh1byh8!~ayz1byz8!%by
21ey2azb

2ez ,

whereg5(11a2)/b.
The values of the Twiss parameters forM @Eq. ~2.10!# at

IP are now discussed.
In the middle of IP, due to symmetry, the dispersionD0

makesh and z8, and h8 and z always zero. In Fig. 2, we
showh andz8 as functions ofj0 for various values ofnz

0 .
Whennz

0&0, M can become unstable and we do not obt
h. Outside the instability region,h is almost an even func
tion of nz

0 . Here, we clearly see howh andz8 depend onnz .
As can be seen in Fig. 2,z8 grows up remarkably, par

ticularly for unz
0u.ny

0 . From Eq.~2.19!, we might expect a
dangerous growth of̂p2& and ^«2& because ofz8 @see Eq.
01650
n

~2.19!#. Also, ^y«& ~and ^pz&) can be greatly modified
which might affect the effective energy resolution of th
monochromatic collision~see Sec. III C!.

Concerning the~usual! Twiss parameters,a and b, be-
cause the IP is a symmetric point with respect to the beta
and synchrotron oscillations,ay and az are zero, whileby

andbz change withnz
0 as shown in Fig. 3.

III. LUMINOSITY AND COLLISION ENERGY SPREAD

In this section we discuss the combined effect of the s
chrotron radiation, the linear optics, and the beam-beam k
on the beam sizes and related quantities.

With good accuracy, we might be able to obtain the
latter quantities from Eq.~2.19! once we have computed th
emittancesey and ez . This, however, is a rather indirec
approach. We use a different formalism, where we first co
pute

s i j 5^xixj& ~3.1!

and then derive the emittances from it@13#. Using this for-
malism, we do not need any detailed information concern
the lattice to calculate the effects of the beam-beam inte
tion, provided we have a formula for the one-turn map wi
out the beam-beam interaction@19#.
FIG. 3. by ~left! andbz ~right! as functions ofj0 for different values ofnz
0 with D050.4 m,ny

050.1.
2-4
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A. Equilibrium envelope matrix

The effects of synchrotron radiation can be simply e
pressed in terms of the normal-mode variables, defined
Eq. ~2.17!, with respect to the unperturbed lattice,X0

5(Y,P,Z,D)[(Xi
0), which is related tox as follows:

X05~H0B0!21x. ~3.2!

The mapping forX0 through the arc is then

S Y

PD 8
5lyr ~my

0!S Y

PD 1Aey
0~12ly

2! S g1

g2
D , ~3.3!

S Z

D
D 8

5S 1 0

0 lz
2D r ~mz

0!S Z

D
D 1Aez

0~12lz
4!S 0

g3
D ,

~3.4!

wheregi ’s are mutually independent random variables w
^gi&50, ^gigj&5d i j , and ly,z5exp(21/Ty,z), T being the
damping time~in units of the revolution time!.

The change of the envelope matrix elements,S i j
0

5^Xi
0Xj

0&, in the arc is then

S 0→S 05~L̂M̂arc!S 0~L̂M̂arc!
t1~ I 2L̂2!Ê0 , ~3.5!

where

Ê05diag~ey
0 ,ey

0 ,ez
0 ,ez

0! ~3.6!

and

L̂5diag~ly ,ly,1,lz
2!. ~3.7!

This treatment of radiation is not exact, but can be assum
to be a good approximation@19#. More precisely, one should
use a tracking code to obtain the stochastic one-turn map
@20#.

From

s5~H0B0!S 0~H0B0! t, ~3.8!

we obtain a map fors through the arc

s→~LMarc!s~LMarc!
t1~ I 2L2!E0 , ~3.9!

where

L5~H0B0!L̂~H0B0!21, ~3.10!

E05~H0B0!Ê0~H0B0! t, ~3.11!

Marc5~H0B0!M̂arc~H0B0!21. ~3.12!

By the beam-beam kick,s is transformed as follows:

s→MbbsMbb
t . ~3.13!

The equilibrium distribution~in the middle of the IP, in the
laboratory frame! is thus a Gaussian distribution,
01650
-
y
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c~x;s50!5
1

A~2p!4 dets
expS 2

1

2 (
i , j

s i j
21xixj D ,

~3.14!

wheres is the solution of the equation

s5Mbb
1/2@~LMarc!~Mbb

1/2!s~Mbb
1/2! t~LMarc!

t

1~ I 2L2!E0#~Mbb
1/2! t. ~3.15!

The emittances are obtained froms as follows:

Eigenvalues@Js#5$ i ey ,2 i ey ,i ez ,2 i ez%. ~3.16!

In Fig. 4 we plot the emittancesey,z as functions ofj0, for
nz

050.08~left! andnz
0520.08~right!. It can be seen that the

longitudinal emittanceez is considerably affected by th
beam-beam force. This effect has usually been overlooke
the literature, where the synchrotron oscillation is assume
be unaffected. Also, the vertical emittanceey increases quite
rapidly.

In Fig. 5 we show some elements of the normalized
velope matrix,s i j /s i j

0 , with s i j
0 5s i j (j050) as functions of

j0 for nz
050.08~left! andnz

0520.08~right!. ForD050.4 m,
ny

050.05 andnz
0,0 ~all other parameters being set as

Table I!, instability sets in ~growth rate .1) for j0
*0.015 774~instability threshold!. It is thus not unexpected
that all quantities blow up quickly whenj0 approaches this
value.

Remarkablŷ p2& increases rapidly regardless of the si
of nz

0 . This is consistent with the steep growth ofz8 shown
in Fig. 2 and Eq.~2.19!.

B. Luminosity

In this section we discuss the luminosity, based on
assumption that the distribution functions,c6(x), of thee6

beams are Gaussian and are given by Eq.~3.14!, s being
replaced bys6.

As is well known, for very short bunches colliding ats,
the luminosityL̃ is given by

L̃~s!5
N1N2 f 0

2pSx~s!Sy~s!
, ~3.17!

wherex stands for the horizontal coordinates,N6 is the num-
ber of particles in thee6 bunch,f 0 is the collision frequency,

Sx,y5A~sx,y
1 !21~sx,y

2 !2, ~3.18!

sx5A^x2&, sy5A^y2&5As11, and all quantities are mea
sured ats. We further assume that the horizontal betatr
function is very large at the IP and thatsx

6(s)5sx
6(0)

[sx
0 . Let us define the nominal luminosity as

L05L̃~0!. ~3.19!

For bunches colliding head-on with finite lengthsz
6 , the

luminosity reduction factor~the luminosity normalized to
L0) is given by
2-5
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FIG. 4. Synchrotron emittances as functions ofj0 with D050.4 m,ny
050.05, nz

050.08 ~left!, andnz
0520.08 ~right!.
1` 1`

g

y

RL5
L

L0
5

1

L0
E

2`
E

2`
dz1 dz2 r1~z1!r2~z2!L̃~s!

5E
2`

1`

ds C~s!
Sy~0!

Sy~s!
, ~3.20!

wheres5(z12z2)/2 and

C~s!5A 2

p@~sz
1!21~sz

2!2#
expH 2

2s2

~sz
1!21~sz

2!2J .

~3.21!

The s dependence ofSy can be deduced from the followin
relations:

s11
6 ~s!5s11

6 ~0!212s12
6 ~0!s1s22

6 ~0!s2. ~3.22!

Assumings12
1 (0)52s12

2 (0), weobtain

Sy~s!5ASy
2~0!1s2Sp

2~0!, ~3.23!

where

Sp5As22
1 1s22

2 . ~3.24!

We assume hereafter that the two beams behave s
metrically so that, for example,Sy5A2sy . Hence,
01650
m-

RL5
1

Ap
E

2`

1` du

A11u2/Rh
2

exp~2u2!, ~3.25!

where

Rh5
sy~0!

szsp~0!
. ~3.26!

The integral is readily computed@21#, yielding

RL5
Rh

Ap
K0S Rh

2

2 DexpS Rh
2

2 D , ~3.27!

whereK0 is a modified Bessel function.
The hourglass effect@22,23# is more important for smaller

Rh (Rh&1), as can be seen from Fig. 6, whereRL is shown
as a function ofRh . For this reason,Rh is called the hour-
glass ratio@12#. It can be written as

Rh5
by

eff

sz
, ~3.28!

whereby
eff is the effective betatron function, Eq.~2.9!.

In Fig. 7, we showRh as a function ofj0. A remarkable
decrease ofRh is seen. Forj0.0, bothh8 andz vanish, as
shown in Sec. II C, so that one obtains
2-6
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FIG. 5. Normalized elements of the envelopes i j /s i j
0 as functions ofj0 with D050.4 m, ny

050.05, nz
050.08 ~left!, andnz

0520.08
~right!. Top: ^y2&/^y2&0 ~solid line!, ^z2&/^z2&0 ~dashed line!, ^«2&/^«2&0 ~dashed-dotted line!, ^y«&/^y«&0 ~dotted line!. Bottom:^p2&/^p2&0.
th

-
sity
ch-

e
t

Rh.
by

0

sz
0 A11

D0
2

by
0ey

0 ~s«
0!2 ~j0.0!. ~3.29!

For j0.0, the beam size is dominated by dispersion in
monochromatization scheme. Whenj0 increases,̂ p2& in-

creases rapidly as shown in Fig. 5, which makesby
eff and

henceRh small.

FIG. 6. Luminosity reduction factorRL as a function ofRh .
01650
e

This rapid decrease ofRh shows that, although the hour
glass effect is not serious enough to reduce the lumino
considerably, one should pay careful attention to the bun
length effect. At the same time, we note thatRh is still in the

FIG. 7. Hourglass ratioRh as a function ofj0 with D0

50.4 m, ny
050.05, and some values ofnz

0 : nz
050.03~dotted line!,

nz
0520.03 ~dash-dotted line!, nz

050.08 ~dashed line!, nz
0520.08

~solid line!. WhenRh;1, the hourglass effect is remarkable. Th
nominal value isRh

0541, and fornz
0520.08, Rh becomes zero a

the instability thresholdj0'0.0158.
2-7
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domain where the thin-lens approximation of the beam-be
kick, Eq. ~2.7!, is acceptable showing the self-consistence
our model.

C. Energy resolution

In monochromatization, the event rateN is the most
important parameter. It depends on the luminosityL and
the spreadsw of the collision energyE11E2 . Let w
5~«11«2) E0 be the deviation of the collision energy from
the nominal value.

Usually N is related to the luminosityL by

N5Ls, ~3.30!

wheres is the cross section of the event. For narrow re
nances, however,s depends very much on the collision e
ergyw, so thats5s(w). The event rate can, accordingly, b
written as

N5L È1`

dw L~w!s~w!, ~3.31!

whereL(w) is the collision energy density function norma
ized to unity. When the cross section of the resonance is

s~w!5
speakG

2

w21G2
, ~3.32!

wherespeak is the peak value of the cross section,G is the
width of the resonance, and we assume thatL(w) is Gauss-
ian with zero mean value and rms valuesw , Eq. ~3.31! is
reduced to

N5LspeakApA exp~A2!erfc~A!, ~3.33!

where

A5
G

A2sw

. ~3.34!

A typical nominal value fort-charm factories may beA
51/2 @24#. In Fig. 8 the normalized event rateN/(Lspeak) is

FIG. 8. Normalized event rateN/(Lspeak) as a function ofA.
01650
m
f

-

displayed as a function ofA.
In a previous paper@12#, we made a warning about

possible increase in the collision energy spread due to
beam-beam interaction. The discussion, however, was b
on the assumption that the bunch-length effect can be
nored for the collision energy resolution. As shown abo
Rh decreases remarkably, so that we may doubt whether
energy resolution increase might have been overestimate
the previous paper. To clarify this point, we extend our p
vious calculations to include the effect of a finite bun
length.

Let us start with the collision of very short bunches
position s. Let f̃ 6(y,«) be the distribution function of the
bunch after integration overp. The luminosityL̃(s) can thus
be put in the form@25#

L̃~s!5N1N2 f 0

3E
2`

1`E
2`

1`E
2`

1`

dy d«1 d«2 f̃ 1~y,«1! f̃ 2~y,«2!.

~3.35!

The distribution function ofw can be written as

L̃~w!5
N1N2 f 0

L̃~s!
E

2`

1`E
2`

1`E
2`

1`

dy d«1 d«2

3d~w2«12«2! f̃ 1~y,«1! f̃ 2~y,«2!.

~3.36!

It is shown in the Appendix that assumingf̃ Gaussian,L̃(w)
is also Gaussian,

L̃~w!5
1

A2ps̃w~s!
expH 2@w2W~s!#2

2s̃w~s!2 J , ~3.37!

with the average

W52S s14
1 2s14

2

s11
1 1s11

2 D ~ ȳ12 ȳ2! ~3.38!

and the second-order moment

s̃w
2 ~s!5

~s11
1 1s11

2 !~s44
1 1s44

2 !2~s14
1 2s14

2 !2

s11
1 1s11

2
.

~3.39!

For a thick bunch, the collision energy distribution is

L~w!5

E
2`

1`

ds C~s!L̃~s!L̃~w!

E
2`

1`

ds C~s!L̃~s!

, ~3.40!

the denominator being the luminosity. The collision ener
spreadsw is then given by
2-8
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sw
2 5

E
2`

1`

ds C~s!L̃~s!s̃w
2 ~s!

E
2`

1`

ds C~s!L̃~s!

. ~3.41!

If we assume that the two beams are affected symmetric
s11

1 5s11
2 , s44

1 5s44
2 ands14

1 52s14
2 , then

s̃w
2 ~s!52s44@12F~s!#, F~s!5

s14
2

s11s44
, ~3.42!

and the formula forsw becomes

sw
2 5

N1N2 f 0 s44~0!

2p3/2sxsy~0!L
E

2`

1`

du
e2u2

A11u2/Rh
2 F12

F~0!

11u2/Rh
2G .

~3.43!

The integral in Eq.~3.43! can be computed explicitly, yield
ing

sw
2 52s44~0!$12F~0!G~Rh!%, ~3.44!

where

G~Rh!5Rh
2FK1~Rh

2/2!

K0~Rh
2/2!

21G , ~3.45!

and K1 is a modified Bessel function. In Fig. 9 we plotG
versusRh .

For Rh→` ~short bunch!, G becomes 1 and Eq.~3.44!
gives sw

2 →s̃w
2 (0), while for Rh→0 ~long bunch!, G be-

comes 0 andsw
2 →2s44(0) as intuitively expected.

Let us turn to dynamics. As Fig. 7 shows,Rh decreases
rapidly as a function ofj0 so that a substantial increase
sw may be foreseen. In Fig. 10 we plot the normalized c
lision energy spreadsw@2s44(0)#21/2 versusj0 for different
values ofnz

0 . It is clear from the figure that the energy res
lution increases rapidly withj0, approaching its nomina
value s«

0 ; this happens regardless of the sign ofnz
0 . This

behavior is similar to that obtained with the assumption
short bunches in Ref.@12#. As a consequence of the increa

FIG. 9. G as a function ofRh .
01650
ly,

-

f

of s«
0 , the event rateN decreases from the nominal value

shown in Fig. 11. This decrease can be even more rapi
slightly slower for differentny as shown from Fig. 12.

Therefore, it turns out that the bunch length does not c
siderably affect the luminosity but the event rate.

The decrease ofN is not only due to the reduction ofRh ,
but is also due to the decrease in the factorF(0), asshown in
Fig. 13, which enhancessw .

In conclusion, the rapid increase of the energy resolut
sw with j0 makes monochromatization less effective or ev
useless. This effect depends quite weakly on the betatron
synchrotron tunes as well as on all other parameters.

IV. DISCUSSION AND CONCLUSION

In the monochromatization scheme, through the large
persion at the IP, the synchrotron and betatron motions
fluence each other, giving several nontrivial strong effects
the synchotron motion in addition to the well-known tran
verse effects for rather small values ofj0. These effects give
several limits for the possible value ofj0. The first limit

FIG. 10. Normalized collision energy spread as a function ofj0

with D050.4 m, ny
050.05, and some values ofnz

0 : nz
050.03 ~dot-

ted line!, nz
0520.03 ~dash-dotted line!, nz

0520.08 ~dashed line!,
nz

050.08 ~solid line!.

FIG. 11. Normalized event rate as a function ofj0 with ny
0

50.05, D050.4 m, andnz
050.08.
2-9
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comes from the single-particle instability threshold, as d
cussed in Sec. II. The second comes from luminosity de
dation. The most serious limit is due to an increase of
collision energy spread, which might invalidate the use
monochromatization.

Within the present analysis, it seems difficult to avo
such dangerous effects. The monochromatization sch
should be carefully optimized. A smaller value ofD might be
more useful; even if it gives a smaller value ofN for small
j0, the degradation ofN for a large value ofj0 might be less
serious.

These conclusions might, however, come from an o
simplification of the model. We need a more detailed ana
sis. First of all, the beam-beam force in the form of Eq.~2.7!
is a linear approximation. In addition, the bunch-length
fect is ignored; the force acts within the finite length and n
as an impulse. It is theoretically possible to use the lin
approximation of the beam-beam force including the bun
length effects. It would, however, lose the simplicity of th
model. A more detailed simulation, based on the symple
beam-beam force@9#, should be done while paying sufficien
attention to the collision energy spreadsw .

The present work, even if too much simplified to give
realistic design of at-charm factory, seems to be useful
understand potentially important issues before entering in
very detailed numerical analysis.
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APPENDIX: ENERGY RESOLUTION FOR THE SLICES

Here, we derive Eqs.~3.38! and ~3.39!. We use the nota-
tion (y,«)5(x1 ,x2). From Eq.~3.36!, we have

FIG. 12. Normalized event rate as a function ofny
0 with j0

50.015,D050.4 m, andnz
050.08.
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L̃~w!5const3E
2`

1`E
2`

1`E
2`

1`

dx1 dx2
1 dx2

2

3d~w2x2
12x2

2! f̃ 1~x1 ,x2
1! f̃ 2~x1 ,x2

2!. ~A1!

Let F6(k1 ,k2) be the characteristic function off̃

F~k1 ,k2!5E
2`

1`E
2`

1`

dx1 dx2 eikixi f̃ ~x1 ,x2!

5expH ik i x̄i2
1

2
Ai j kikj J , ~A2!

where repeated indices (i and j ) are understood to be
summed from 1 to 2 and

x̄i5^xi&, Ai j 5^~xi2 x̄i !~xj2 x̄ j !&. ~A3!

We obtain

L̃~w!5const3E
2`

1`E
2`

1`

dk dp f̃1~k,p! f̃ 2~2k,p!eipw.

~A4!

The characteristic function ofL̃ is

l~p!5E
0

1`

dw eipwL̃~w!

5const3expH 2 i
L12

L11
Y p2

1

2 S L222
L12

2

L11
D p2J ,

~A5!

where Y5 x̄1
12 x̄1

2 , L115A11
1 1A11

2 , L125A12
1 2A12

2 , L22

5A22
1 1A22

2 . This completes the derivation of Eqs.~3.38! and
~3.39!.

FIG. 13. F(0) as a function ofj0 with D050.4 m, ny
050.05,

nz
050.08.
2-10
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