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Synchrotron-betatron coupling due to monochromatization
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The effects of large dispersion at the interaction point are discussed within the linear approximation of the
beam-beam force. The synchrotron and betatron motions affect each other. Synchrotron and betatron tune
shifts as well as bunch-length and energy-spread modifications appear, among many effects. Depending on the
parameters, degradations of the luminosity can occur due to the hourglass effect. More serious is an enlarge-
ment of the collision energy spread, which may reduce the event rate and invalidate the monochromatization
scheme.
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I. INTRODUCTION matization scheme for the BeijinggCharm factory{10]. On
the other hand, with only simulations it is difficult to under-

A 7-charm factory is being seriously consideddd. To  stand the general properties of such a scheme.
obtain a sufficient number af/ 4 particles, a monochroma- In this paper we discuss all possible linear effects due to
tization scheme has been actively studi@li Because the the presence of dispersion at the IP, while paying attention to
resonance width of thé/ particle is much smaller than the the mutual interaction between the betatron and the synchro-
usual spreadr,, of the collision energy ine"e~ storage tron degrees of freedom within the weak-strong approxima-
rings, most collisions would not be useful for the experimenttion of the linearized beam-beam force. Considering the role
Instead of reducing the energy spread of the beam, which igf the linear approximation in the usual beam-beam study,
quite difficult, monochromatization has been proposed. ~ we can expect good insight concerning these effects by using

The idea of monochromatization is to redueg by pro-  this approximation. Such an analysis seems to be basic to
ducing a rather large dispersi@nwith opposite signs for the understanding the fundamental structure of the problem but
e” ande” beams at the interaction poifiP). The dispersion does not seem to have been performed with sufficient care
at IP, however, is known to be a source of synchrotron{11]. Of course, this simplified calculation should not be ap-
betatron coupling. plied directly to a realistic estimate of the effects.

Often, the synchrotron degree of freedom is treated as a This paper is organized as follows. In Sec. Il, we discuss
large heat bath, which is not affected at 85]. Such a the symplectic effects. Section Ill is devoted to those effects
treatment might be reasonable when the dispersion is smafssociated with radiatiofthe beam sizes, ej¢cincluding the
as in the case where it originates from machine errors. On thiéiminosity and the energy resolution. Section IV is for dis-
other hand, in the monochromatization scheme, the dispepussion and conclusions. Some technical details are collected
sion values might be well beyond the limit of this approxi- in the Appendix.
mation. Hence, the effects on the synchrotron motion should Preliminary results on the subject have been already pub-
also be considered, and the synchrotron and betatron degreléghed in a short fornj12].
of freedom should be treated on equal footing.

In standard textbooks, such as Ré®.7], it appears that Il. SYMPLECTIC EFFECTS
the definition of dispersion is based on the assumption that _
the energy of an electron is constant. This approach appears A. One-turn matrix
to be intuitively valid when the synchrotron tune valugis We start by constructing a one-turn matrix for single-

close to zero, but we show that even this is not true. We alsparticle motion, within the framework of th@veak-strong

show that the usual definition of dispersion is not appropriatéinear symplectic dynamics for the case where dispersion ex-

in the presence of a large dispersion at IP. ists at IP. We assume that there is only one IP and consider
In simulation programs such as the beam-beam-codgnly the vertical and longitudinal motions.

(BBC) described ir{8], these effects are already included. A The physical variables describing the betatron and syn-

weak-strong simulation has been run on the basis of 3Rhrotron motions are

(three-dimensionalsymplectic beam-beam mappin{Q],

which showed a satisfactory performance of the monochro- X=(y,p,z,e)=(X;), 23

wherey is the vertical coordinatep=my,¢(dy/ds)/pg is

*Also at KEK, High Energy Research Organization, Tsukuba,the vertical momentum normalized by the momentpgof
Japan. the reference particlda constant z=s—ct(s), ¢=(E
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—Eg)/Eq, WhereE, is the energy of the reference particle, ties. The nominal synchrotron tun€ is negative for con-
and vy, is the relativistic factor of the nominal particle en- ventional electron machines with a positive momentum com-
ergy. paction factor. We, however, consider both signs f§r
The one-turn matrix from IPS=0,) to IP(s=0_), ex-  because of the option of the negative momentum compaction
cluding the beam-beam kick, can be put in the followingfactor[15]. Note that the subfix or superfix O refers to all the

general form(13] as long as the motion is stable: unperturbed quantities evaluated without the beam-beam in-
. teraction.
M(S)=H(S)B(S)M,(S)B Hs)H X(s), (2.2 We now introduce the beam-beam interaction at IP. For a

A head-on collision, the linearized beam-beam force is repre-
Marc(s) =diag((uy),r(u,)), B(s)=diagby,b,), sented by the matrix
(2.3

1 0 0 O
VBy.z 0 —4m&lBY 1 0 0 ,
= ' ' Mpp= .
by,z _ay,z/ By,z 1/ By,z ' bb 0 o 1 ol 27
0 0 0 1
cosp  Sinu
r(,u)—< —sinu cos,u)’ 24 fom Nres) 28
O_ . .
- . 27 Yre10y(ay+ 03
7
H :< Y ) h= ( ' 77,)’ Here, ¢, is the verticalnomina) beam-beam parametét,is
the number of particles in the strong beanis the classical
0 electron radius, andy (o)) is the nominal horizontalver-
h=jh'j=| ) (2.5 ftical) beam size.
g ¢ For more realistic cases we should take into account the

. . _ bunch-length effedt16], one possible way is to linearize the
Here b=y1—det(), j is the 2<2 symplectic metric..  gynchrotron-beam mappiri@]. For the sake of simplicity,
=27y, and v is the tune. Note thaH, B, and M, are  however, we use Ed2.7) in the following. It seems conve-
symplectic in the 4D sense. nient to introduce the effective betatron functigfl’ as

The 4x4 symplectic matrixM has ten degrees of free-

dom. The number of Twiss parameters is also tenythad off Ty
z modes have three parametets ¢, ) each, and the four By o 2.9
parameters#, n', {, and{’) characterize the coupling be- P
tween the two degrees of freedom. Thé& are generaliza- where op= \/<—p2§ which agrees Wiﬂﬁg when D=0 and
tions of the conventional dispersidn's, while thel’s are to £ ~0. The typical parameters of the usual monochromatiza-
be called time dispersions. tion scheme always satisfy the relati@j">o,, o, being

The conventional dispersion® and D’ as defined in  he punch length. Therefore the bunch length effect is not
Refs.[6,7] for example, assume that the energy of a parucle,mportant and this simplification is acceptable.

is constant. They are defined as the closed orbit of an off- The fy|| one-turn matrixincluding the beam-beam inter-
momentum particle. The conventional way is self consistenfction can thus be written as

only when D and D’ vanish in the cavitied14]. Then,

7 (") isidentical withD (D"), and{ and{’ vanish all over M=M¥am. miz. (2.10
. ' . . . bb"™vtarc'V'bb

the ring. With the beam-beam interaction in the presence of

D at IP, howeverp andD' can be created in cavities even

though they were zero before. This is why we negsl B. Linear instabilities

Thus, in this case, it is not appropriate, to U3k but the The (perturbed tunes are obtained from the eigenvalues
(generalizegldispersiony is a natural extension @, which ~ of M. These latter, in view of the symplecticity M, can be
(with ¢’s) can work for general cases. readily computed agl2]

Now for simplicity, we assume that, without beam-beam 0 0 o o
interaction, the synchrotron-betatron coupling is absent and? COSt+ = COSy+COSu, — 2m&o(SiNpy+ x Sinw;) * Vd,
IP is a symmetric point with respect to the betatron and syn- (211
chrotron motions,

where

_ _ 7 0 —1-1
Mare=M(0-,0,)=HoBoMarc Bo Ho™, (2.6 d={cosud—cosu)—2méy(sinuy— x sinu2)}?

whereM, . is My,c with =), B® is B with a,,=0, +16m2Egx sinuy sinu) (2.12
andHg is H with =Dy and ' =¢={¢'=0. We have also
implicitly assumed that the dispersion does not exist in caviis the synchrotron tune-shift factor,
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betatron instabilities. Also note that the synchrotron-betatron
instability region (both upper and lower edgesnoves
through the ¢y ,v2) plane asé, is changed, while the upper
edges of the betatron and synchrotron instabilities regions
stay fixed. This “floating instability” seems to be typical of
the sum resonance in the beam-beam intera¢ti@h

It is seen that the naive coastiigonstant energybeam
approximation is not appropriate fa?~0. In fact, for »2
<0, the motion is unstable2=0 is a singular point and the
coasting beam approximation is misleading.

The conditiony<1 is equivalent to o0 2)%/ B)< e ; for
monochromatization to be useful, the beam size should be
dominated by the dispersion contribution, so that we have

FIG. 1. The quantity= (growth rate—1) as a function ofve (DOO'O)Z
and 1 with Dy=0.4 m, £,=0.05. €< ——F —<e€y; (2.16
By
Di Dja? i i
= 0 207 213 €€y being the emittances. It may be useful to note tkgat the
,33,32 303 synchrotron tune shift is large fét) largeDy, (2) largeo,,

(3) smalla?, (4) small 89, and(5) small|vJ]. Items(3), (4),
ando, is the energy spread. The motion is stable if and onlyand (5) are general directions of design to obtain a large
if cos . is real andcosu.|<1. To the lowest order iy, |uminosity by making the beam size small while avoiding
we obtain synchrotron-betatron side bands3].

0 0
vy— vyt o, (2.14 C. Twiss parameters
-0+ £y (2.19 Twiss parameters are widely used in order to parametrize
the one-turn matrix and to describe the properties of the lat-
Equation(2.14) is the well-known betatron tune shift, while tice. Several definitions of Twiss parameters in the presence
Eq. (2.19 implies that a synchrotron tune shift also occursof synchrotron oscillations have been proposed. We follow
due to the presence @, at the IP. the definition proposed in Ref13] where Twiss parameters

Equations(2.14 and (2.15 imply that both tunes in- are regarded as parameters that factorize and diagonalize the
crease. Considering the motion of the eigenvalues on the ungine-turn matrix. By this definition, dispersion is also in-
circle in the complex plane, and from the fact that the motioncluded in the Twiss parameters. We use E410 and dis-
becomes unstable only when two of the eigenvalues meet afuss how the beam-beam interaction in the monochromatiza-
the circle, we can expect that the system becomes unstabfign affects the Twiss parametdk4].
when one of the following conditions appliegl) vS For later convenience, we first express the beam envelope
=< half integers(betatron instability; (2) u(z)s half integers ~ matrix (in physical variableso;=(x;x;) in terms of Twiss
(synchrotron instability, (3) »2+ y(y’sintegers (synchro-  parameters. The normal mode varialflas defined as
betatron instability. .

Using Eqg.(2.11), the eigenvalues can be computed ex- X=(HB) "x. (217
actly. In Fig. 1 we plot the _mstablllty regions Wh‘?fe the Let us assume that the beam envelope matrix for the normal
growth rate(largest absolute eigenvaluexceeds unity in the modes,S; =(X,X:), is
(vy,v?) plane. Hergand hereafter, unless otherwise stated - e
the set of model parameters listed in Table | is used. S=diag e,,€, €, ,€,). (2.18

The three unstable regions mentioned above are clearly
visible. The synchrotron-betatron instability corresponds tol 0 evaluate the’s, we should include the radiation effects,
the case wittd<0. The unstable regions become thicker forwhich is done in Sec. lll. Equatiof2.18 is a good approxi-
larger values ok, andD,. As can be seen from the figure, a mation for the equilibrium distribution of an electron beam,
machine might be intrinsically more stable whef>0, be- ~ Provided that the effect of radiation is smgll9].
cause one can get rid of the synchrotron and synchrotron- From o =(HB)S(HB)', we obtain, after some algebra,

TABLE |. Standard parameters used as examples in this pa- <y2>:b2,3y€y+{712+(,3z§_azﬂ)z}ﬁz lfz,
per. 2 2 12 12 1t
<p >:b ')’y6y+{77 Yo+ B =2a,m' ¢ }Eza
By 0.03 m 9 26.3m ) ) o4 ,
63 4x10°°m Eg 3.8x10 % m <Z >:{77 +(a’y77+By77 ) }By Ey+sz €z,
ol 3.8x10°* ol 0.01m 5 5 U )
T, 1000 T, 500 (e9)={{"+ (ay{+ By )}By "€, b ys€;,
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n(m) {(m™)

o | | | £ ‘ | | £,

0 0.01 0.03 0.05 0 0.01 0.03 0.05

FIG. 2. 7 (left) and’ (right) as functions of, for different values ofs? with Dq=0.4 m, v3=0.1.

(yp)z—ayb26y+{7’z777]'—Olz(77§'+§77')+/3z§§'}€z, (2._19)]. A_Iso, (ye) (and <pz>)_ can be greatly modified,
which might affect the effective energy resolution of the
(y2)=—b(ayn+Byn')e,~bla,n—B,{)e,, (219  monochromatic collisiorisee Sec. Il ¢
Concerning thelusua) Twiss parametersg and 3, be-

(ye)=b(ayl+ By ) ey +b(y,n—al)e,, cause the IP is a symmetric point with respect to the betatron
. and synchrotron oscillationsy, and «, are zero, whileg,
(pe)=—{{b+ayb(ay{+pBy{")}eBy and 3, change withv? as shown in Fig. 3.

+{77’b_ ab(—a,n’ +Bz§,)}fz:8;l )
I1l. LUMINOSITY AND COLLISION ENERGY SPREAD

(p2)={by+ “yb(“y”+:3y”,)}€yﬂ§1+ b(BL" —azm') e, In this section we discuss the combined effect of the syn-
, b1 ) chrotron radiation, the linear optics, and the beam-beam kick
(ze)={n{+(ayn+Byn')(ayl+py")}By "€~ abe, on the beam sizes and related quantities.

With good accuracy, we might be able to obtain these
latter quantities from Eq.2.19 once we have computed the
emittancese, and €,. This, however, is a rather indirect
approach. We use a different formalism, where we first com-
pute

wherey=(1+a?)/B.

The values of the Twiss parameters Mr{Eg. (2.10] at
IP are now discussed.

In the middle of IP, due to symmetry, the dispersiop
makes#n and ', and ' and ¢ always zero. In Fig. 2, we
show » and ¢’ as functions of¢, for various values oﬁzg. vy 31

0 . Tij <XIXJ> (3.9
Whenv,=<0, M can become unstable and we do not obtain

7. Outside the instability regiony is almost an even func- and then derive the emittances fron{13]. Using this for-

tion of »; . Here, we clearly see how and{’ depend orv,.  malism, we do not need any detailed information concerning
As can be seen in Fig. Z,' grows up remarkably, par- the lattice to calculate the effects of the beam-beam interac-

ticularly for [v9]=v). From Eq.(2.19, we might expect a tion, provided we have a formula for the one-turn map with-

dangerous growth ofp?) and(s2) because of’ [see Eq. out the beam-beam interacti¢h9].

B y(m) ﬁ z (m)
0.030 50
0.027 30
0.024
10
| \ \
0.022 & o | ‘ ' 4

0 0.01 0.03 0.05 0 0.01 0.03 0.05

FIG. 3. B, (left) and 3, (right) as functions of, for different values ofv) with Dy=0.4 m, »9=0.1.
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A. Equilibrium envelope matrix

The effects of synchrotron radiation can be simply ex-  ¥(Xs= O):—(Zw)“detcr P( 2 <T|, iX 1)1

pressed in terms of the normal-mode variables, defined by (3.14
Eq. (2.17, with respect to the unperturbed lattice '
=(Y,P,Z,A)=(X?), which is related to as follows: whereo is the solution of the equation

Xo=(HoBo) *x. (3.2 T=Myil (AM o) (M) (M) (AMge)*
The mapping forX, through the arc is then +(1— )Eo](Ml/2 t (3.195

The emittances are obtained frammas follows:

J1
9(1—\? ( ) 3.3
SN g, @3 Eigenvalue§Jo]={ie,,~ie,ic,,—ie}. (3.16

Y\’ oY
(P) =7\yr(,u,y) P +
Z\" (1 O 0 In Fig. 4 we plot the emittances, , as functions o€, for

(A) :(0 )\g + \/fz(l_}\‘zl)<gs)v v, 9= 0.08(left) andv —-0. 08(r|gei§i) It can be seen that the
(3.4) Iong|tud|nal emlttanceeZ is considerably affected by the

beam-beam force. This effect has usually been overlooked in

whereg;’s are mutually independent random variables withthe literature, where the synchrotron oscillation is assumed to
(9i)=0, (9ig;)=4j;, and\, ,=exp(-1/T, ,), T being the be unaffected. Also, the vertical emittanegincreases quite

damping time(in units of the revolution time rapidly.
The change of the envelope matrix eIemenlSl,] In Fig. 5 we show some eIements of the normalized en-

—<X|°Xf>, in the arc is then velope matrixnIJ /crIl , with a,J dij(§0=0) as functions of
éo for v, °=0. 08(Ieft) andv —0.08(right). ForDy=0.4 m,
S0 8%=(AM o) SOU(ANM o)+ (1-ADEy, (35  vy=0. 05 and»2<0 (all other parameters being set as in
Table ), instability sets in(growth rate >1) for &,
where =0.015 774(instability thresholdl It is thus not unexpected
that all quantities blow up quickly wheg&, approaches this
dlaQG e e eo) (3.6 value.
Remarkably(pz) increases rapidly regardless of the sign
and of »2. This is consistent with the steep growth &f shown

A in F| 2 and Eq(2.1
A=diaghy Ay, 1)\2). (3.7) J a(219.

r(pd)

z
A

This treatment of radiation is not exact, but can be assumed B. Luminosity

to be a good approximatidri9]. More precisely, one should In this section we discuss the luminosity, based on the
use a tracking code to obtain the stochastic one-turn mappirgssumption that the distribution functiong, (x), of thee™
[20]. beams are Gaussian and are given by @Bql4), o being
From replaced byo™.
As is well known, for very short bunches colliding st

- 0 t ~
o=(HoBo)S"(HoBo)', 38 the luminosityL is given by
we obtain a map forr through the arc _ N,N_f,
LS =55 9509 93,3 (3.17
—(AMar) o(AM o) +(1-A2Eg, (39 m2x(8)2y(
where wherex stands for the horizontal coordinatés; is the num-
ber of particles in the* bunch,f, is the collision frequency,
_ 1 -1 —
A=(HoBo)A(HoBo) 7, (3.10 3 y= V(on )+ (0,,)%, (3.18
Eo=(HoBo)Eo(HoBo)", (3.1)  ox=(x%, o,=\(y®)=1/oy, and all quantities are mea-
sured ats. We further assume that the horizontal betatron
M are= (HoBo)M are(HoBo) ~ 2. (3.1  function is very large at the IP and that, (s)= o (0)

=0?. Let us define the nominal luminosity as
By the beam-beam kicky is transformed as follows: _
Lo=L(0). (3.19
o—Mp,oMy,. (3.13 .
For bunches colliding head-on with finite leng#ty , the
The equilibrium distributior(in the middle of the IP, in the luminosity reduction factorthe luminosity normalized to
laboratory framgis thus a Gaussian distribution, L) is given by
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€,(m) €,(m)
3.86x10™8 46x1078
3.84x1075 |- 4.0x107°
-6 ] | |
3.82x10 & 34x10-6 | | | £
0 0.005 0.010 0.015 0 0.005 0.010 0015
€.(m
€,(m) ,(m)
5x107 5x107 [
3x107 |- 3x107 |-
1x107 |- x1o” |
\ | | 0 | | |
0 & &
0 0.005 0.010 0.015 0 0.005 0.010 0.015

FIG. 4. Synchrotron emittances as functionstgfwith Do=0.4 m, »y=0.05, »7=0.08 (left), and »9=—0.08 (right).

R 1JHJ+WO' dz_ pi(z:)p-(z-)L(s) L[rr__du 2
L= =7 2, AZ_py(Z24)p-(Z2-)L(S R =— —————exp(—Uu), (3.2
LO LO —o0 — o0 L \/; —® \/1+ UZ/Rﬁ F( )
+oe 3,,(0)
= ds O(s) =——, 3.2 where
| Tasa EvC (3.20
0
wheres=(z,—z_)/2 and W= 7y(0) ) (3.26
Uzo'p(o)
2 2s? : . . o
C(s)= expl - ——— The integral is readily computd@1], yielding
(s +y2 —\2 X +42 2|
(o, )"+ (0o, )] (o,)+(o,)
(3.21 Ry Rf Rf
RinKO —|exp 5|, (327)
The s dependence at, can be deduced from the following N 2 2
relations:
whereK, is a modified Bessel function.
011(8)=071(0)%+207,0)s+0,(0)s*>.  (3.22 The hourglass effe¢2,23 is more important for smaller
R, (Ry=1), as can be seen from Fig. 6, wh&g is shown
Assumingo;,(0)=—o1,(0), we obtain as a function oRRy,. For this reasonR, is called the hour-
glass ratig12]. It can be written as
— 2 2% 2
2y(s)=V2y(0)+s°2(0), (3.23 et
0y
where Rn= o, (3.28
3 p=Nost 0gs (324 wherep;" is the effective betatron function, E(.9).

In Fig. 7, we showR, as a function of,. A remarkable
We assume hereafter that the two beams behave syngecrease oRj, is seen. Fog,=0, both»’ and{ vanish, as
metrically so that, for example&,, = \/an. Hence, shown in Sec. Il C, so that one obtains
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0
oy [T

0
o [0

0 | | | & o | | | ¢
0 0.003 0.009 0.015 0 0.003 0.009 0.015
<p*>/<p*>y <p2>/<p?>g
100 100
60 | o |-
20 | 20 |
0 ' ‘ l £ o | | | £
0 0.003 0.009 0.015 0 0.003 0.009 0015

FIG. 5. Normalized elements of the envelopg/aﬁ as functions of¢, with Dy=0.4 m, vy 0.05, vz 0.08 (left), and vz —0.08
(right). Top: {y?)/{y?), (solid line), (z2)/(z?), (dashed ling (£2)/{£?), (dashed-dotted ling(ye)/(ye), (dotted lind. Bottom:{p?)/{p?),.

B0 D2 This rapid decrease d%;, shows that, although the hour-
Rp= % 1+ —— (00)2 (£5=0). (3.29 glass effect is not serious enough to reduce the luminosity
o, y y considerably, one should pay careful attention to the bunch-
length effect. At the same time, we note tiptis still in the
For £,=0, the beam size is dominated by dispersion in the
monochromatization scheme. Wheg increases{p?) in-

creases rapidly as shown in Fig. 5, which mak@ﬁ and

henceR;, small. 40
Ry 30
20
0.8
10
0.6
0 fo
04 0 0.005 0.010 0.015
0.2 FIG. 7. Hourglass ratioR,, as a function of¢y with Dy
—0 4 m, v =0.05, and some values of : 12=0. O3(dotted ling,
0 | | | R = -0.03 (dash dotted ling vz 0.08 (dashed ling vz —0.08
0 05 10 L5 h (SO|Id line). WhenR,~1, the hourglass effect is remarkable. The
’ ' ' nominal value isR°=41, and fors?=—0.08, R, becomes zero at
FIG. 6. Luminosity reduction factdr, as a function oRR;,. the instability threshold,~0.0158.
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N/Lopeax displayed as a function dk.

In a previous papefl2], we made a warning about a
possible increase in the collision energy spread due to the
beam-beam interaction. The discussion, however, was based
on the assumption that the bunch-length effect can be ig-
nored for the collision energy resolution. As shown above,
Ry, decreases remarkably, so that we may doubt whether the
energy resolution increase might have been overestimated in
the previous paper. To clarify this point, we extend our pre-
vious calculations to include the effect of a finite bunch

09

0.6

03 length.
Let us start with the collision of very short bunches at
0 | | A positions. Let T..(y,e) be the distribution fynction of the
0 1 3 5 bunch after integration over. The luminosityL(s) can thus

. , be put in the forn{25]
FIG. 8. Normalized event rat&7(Lope,) as a function ofA.

domain where the thin-lens approximation of the beam-beamL(S) =N+N-To

kick, Eq.(2.7), is acceptable showing the self-consistence of +oo (oo (4o ~ ~

our model. XJ: Jf Jf dyds,de_f, (y,e;)f (y,e-).
C. Energy resolution (3.35

In monochromatization, the event raf& is the most The distribution function ofv can be written as
important parameter. It depends on the luminodityand

the spreado,, of the collision energyE, +E_. Let w - N N_fq [+= [+ [+
=(g, +&_) E, be the deviation of the collision energy from A(w)= E—f f f dy de, de_
the nominal value. (s) Jow o )

Usually \Vis related to the luminosity by X (W—g,—& )F.(y.e )T (y,e.)
+ - + 1€+ — 1©— )

N=Lo, (3.30 (3.36

where o is the cross section of the event. For narrow resott is shown in the Appendix that assumiﬁg’.;aussian?\(w)
nances, howeveir depends very much on the collision en- i 51s0 Gaussian

ergyw, so thato= o(w). The event rate can, accordingly, be

written as Ao 1 p{ —[W—W(S)]z} 337
w)= = ex = , .
+o0 N S 20,(9)?
N=LJ dwA (W) o(w), (3.31) mul(S) uls)
- with the average
whereA (w) is the collision energy density function normal- . B
ized to unity. When the cross section of the resonance is 0147014 — —
W=—| ———|(y+—Y-) (3.39
2 ot oy
()= Toeat. (332
7 w2412’ ' and the second-order moment
whereoeqx is the peak value of the cross sectidhjs the - (ot o) (ot o) — (01— 01p)?
width of the resonance, and we assume théw) is Gauss- ow(s)= i .
ian with zero mean value and rms valug,, Eq. (3.3]) is Tt o (3.39
reduced to '
N I—U'peak\/;A expA2)erfd(A), (3.33 For a thick bunch, the collision energy distribution is
+ o ~ _
where f ds C(s)L(s)A(w)
r A(wW)=— . (340
A= . 3.3 f ds Q(s)L(s
N (334 _dsas)i(s)

A typical nominal value forr-charm factories may bé  the denominator being the luminosity. The collision energy
=1/2[24]. In Fig. 8 the normalized event ratdf (Lopea9 is  spreado, is then given by
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G

08 [~

06 [~

04

0.2

0 | | | | R
0 1 2 3 4 5

FIG. 9. G as a function oy, .

fﬂcds QAs)L(s)a(s)
o= . (3.41)
L ds C(s)L(s)

If we assume that the two beams are affected symmetricallycjII

0'1—1: 0'1_1, 0'2'4= 0'Z4 and 0‘1'4= - 0-1_4, then

2

~2 . O1
Tu(8)=20u1-F(9)], F(s)=_—". (342
and the formula fowr,, becomes
Uz_Nﬂ\rfo 0ul0) (= e v’ _F(O)
Y2700, (0)L )= {1+ U%RS 1+u?R2|
(3.43
The integral in Eq(3.43 can be computed explicitly, yield-
ing
04=20440){1-F(0)G(Ry)}, (3.44
where
K1(R?/2)
G(Ry)=Rf| ————1/, (3.49
Ko(RH/2)

and K, is a modified Bessel function. In Fig. 9 we plGt
versusRy, .

For R,— (short bunclh, G becomes 1 and Ed3.44)
gives 02— 02(0), while for R,—0 (long bunch, G be-
comes 0 ancbfv—>2¢r44(0) as intuitively expected.

Let us turn to dynamics. As Fig. 7 showR,, decreases

rapidly as a function o€, so that a substantial increase of
a,, may be foreseen. In Fig. 10 we plot the normalized col-

lision energy spread,[2044(0)] Y2 versusé, for different

values ofvg. It is clear from the figure that the energy reso-

lution increases rapidly withk¢,, approaching its nominal
value o ; this happens regardless of the signf. This

PHYSICAL REVIEW B4 016502

Ow/V20u4

0.8

0.6

0.4

0.2

0 | | | §0

0 0.005 0.010 0.015

FIG. 10. Normalized collision energy spread as a functiogqof
with Do=0.4 m, »)=0.05, and some values of : »2=0.03 (dot-
ted ling, »Y=—0.03 (dash-dotted ling »2=—0.08 (dashed ling
»2=0.08 (solid line).

of 0¥, the event rateV decreases from the nominal value as

shown in Fig. 11. This decrease can be even more rapid or
ghtly slower for differentv, as shown from Fig. 12.
Therefore, it turns out that the bunch length does not con-
siderably affect the luminosity but the event rate.

The decrease of/is not only due to the reduction &;,,
but is also due to the decrease in the fa&t@d), asshown in
Fig. 13, which enhances,, .

In conclusion, the rapid increase of the energy resolution
oy With €5 makes monochromatization less effective or even
useless. This effect depends quite weakly on the betatron and
synchrotron tunes as well as on all other parameters.

IV. DISCUSSION AND CONCLUSION

In the monochromatization scheme, through the large dis-
persion at the IP, the synchrotron and betatron motions in-
fluence each other, giving several nontrivial strong effects on
the synchotron motion in addition to the well-known trans-
verse effects for rather small values&f These effects give
several limits for the possible value @f. The first limit

N/Lo'peak

01 |-

| | | é:o

0.005 0.010 0.015

behavior is similar to that obtained with the assumption of FIG. 11. Normalized event rate as a function &f with V‘y)
short bunches in Ref12]. As a consequence of the increase =0.05, Dy=0.4 m, andv9=0.08.
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N/Lopeax F
05 1
0.9
0.3
0.8
0.1
| | | | |
Vy §0
0 0.1 0.3 0.5 0 0.003 0.010 0.015
FIG. 12. Normalized event rate as a function mﬁ‘ with &g FIG. 13. F(0) as a function of, with Dy=0.4 m, VSZO.OS,
=0.015,D,=0.4 m, andv?=0.08. 19=0.08.

comes from the single-particle instability threshold, as dis- - +oo (4w (4o .
cussed in Sec. II. The second comes from luminosity degra- A (W) =consi fﬁm fﬁw fﬁw dxy dx; dx,
dation. The most serious limit is due to an increase of the
collision energy spread, which might invalidate the use of ><5(w—x2+—x2’)~f+(xl,x2*)7,(xl,x2’). (A1)
monochromatization.
Within the present analysis, it seems dn‘f_lculf[ to avoid Let F.. (ky ,k,) be the characteristic function &f
such dangerous effects. The monochromatization scheme
should be carefully optimized. A smaller value®imight be +oo

+ o0
more useful; even if it gives a smaller value sffor small F(kl,k2)=f f dx; dx, €KX (x;,%,)
&, the degradation ot/ for a large value of, might be less e
serious. 1
These conclusions might, however, come from an over =exp{ikixi— EAijkikj], (A2)
simplification of the model. We need a more detailed analy-

sis. First of all, the beam-beam force in the form of E&j7) o .
is a linear approximation. In addition, the bunch-length ef_where repeated indicesi (and j) are understood to be
summed from 1 to 2 and

fect is ignored; the force acts within the finite length and not
as an impulse. It is theoretically possible to use the linear — — —

approximation of the beam-beam force including the bunch- Xi=X), A== X) (X X)). (A3)
length effects. It would, however, lose the simplicity of the
model. A more detailed simulation, based on the symplecti
beam-beam forcE9], should be done while paying sufficient

éNe obtain

attention to the collision energy spreag, . A (W)= constx ijmdk dp f. (k,p)T_(—k,p)ePW.
The present work, even if too much simplified to give a o J -
realistic design of ar-charm factory, seems to be useful to (Ad)
understand potentially important issues before entering into a _
very detailed numerical analysis. The characteristic function ok is
ACKNOWLEDGMENTS Mp)= erdeépWK(W)
0
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(A5)
APPENDIX: ENERGY RESOLUTION FOR THE SLICES where Y:XI_XI, A= AI1+AIL A= A1+2_ AL, Ay
Here, we derive Eqg3.38 and(3.39. We use the nota- =A,,+A,,. This completes the derivation of Eq8.38 and
tion (y,e)=(x1,X,). From Eq.(3.36, we have (3.39.
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